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Abstract-Three major regimes of response are identified for time-dependent deformation of a solid matrix
which contains fluid globules free to communicate with each other and adjoining elements or atmosphere.
The moduli pertaining to the four limits are estimated from specification of solid and fluid properties
(moduli, concentrations, and geometry): alternative techniques are outlined but a rationalized version of the
conventional self-consistent approximation is specifically developed and applied to special cases of interest,
viz. spherical and flat ellipsoidal fluid inclusions. Characteristic times are identified for each regime which,
along with frequent simultaneity of local inter-site and global inter-element diffusion, are emphasized as
rendering suspect the classical and mixture theories for wave propagation: especially, the assumption of a
single tensor-valued potential, to govern macroscopic fluid flow, has very limited application. Related
complications for inelasticity formulations and "effective-stress" laws are discussed; special schemes are
suggested to resolve the various difficulties but considerable further study is being undertaken.

1. INTRODUCTION

A variety of theories have accumulated over the past four decades on the related subjects of
heterogeneous solids and fluid-saturated porous media. Methods for computing the effective
moduli and other (e.g. thermal or electrical) properties of the former have been developed and
improved, with occasional consideration of the case where the second phase is fluid-occupied
porosity; central references in this respect are the treatments by Budiansky[l,2] and Hill[3],
the computations by Wu[4], Walsh[5] and others [6, 7], the more recent generalizations of
Gubernatis and Krumhansl[8] and the various potentially useful crack-density tensor
concepts [9]. Meanwhile, the basis for describing coupled fluid flow and solid matrix defor
mation has been developed and applied by Biot[lO, 11, respectively], with recent rationaliza
tions by Rice and Cleary [12, 13]. However, despite its frequent "extension" Le.g. 14-18] to
describe the dynamic response of porous media infiltrated by one (or even many) fluid phases,
the classical concept of a single fluid stress and flow vector (more recently cloaked in mixture
theory formalism) has not been at all vindicated for the rapid stress alterations that many
dynamic circumstances (e.g. geophysical wave propagation) would imply. A major goal in this
paper is to lay bare the physical difficulties that may frequently obstruct such a simplified
description of the medium.

In the first place, we employ concepts familiar from studies of composite solids to indicate
that there are at least three distinct elastic responses that the fluid-saturated porous medium can
exhibit. The first corresponds to instantaneous stiff shear response of the fluid (or other
diffusive species located in distributed sites), the second derives from bulk stiffness but negligible
shear modulus within each site (after viscous but isolated relaxations) and the third is distinguished
by a negligible bulk or shear resistance of the various sites (after sufficient matter has been
squeezed out that the stress-generated fluid pressure has been extinguished). The latter is referred
to as the "drained" condition; rationalization [12] of Biots theory then reveals
another physically important elastic limit, which corresponds to the "undrained" case where no
net flow of fluid is allowed out of the representative microstructural element under stress
(although local exchange of fluid between sites is permitted). These four most obvious elastic
limits imply at least three regimes of time-dependent response: the first is essentially visco
elastic relaxation within fluid sites (including, perhaps, the few realistic mechanisms proposed
by Biot[l5]). If the boundaries of the material element considered are sealed against fluid
exchange with adjoining elements then the second regime is also a purely viscoelastic (but
diffusive) internal readjustment of the microstructure; the result would be an equilibrated
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potential of the fluid and subsequent removal of the jacketing (e.g. communication with
adjacent stressed elements) would lead to a third regime of global diffusion viz. inter-element
exchange of fluid until the potential reaches an equilibrium state throughout the stressed body.
However, the sealing process is clearly an artifact which is not present in the real body: thus. if
their characteristic times are similar, the diffusive internal readjustment and global diffusion can
be occurring simultaneously and, therefore, it may not be possible to define a single tensor
valued fluid potential which could be chosen to govern global diffusion. Even if a single flow
vector can be identified as representing the net mass flow of fluid in any direction, it is not
obvious how a constitutive relation (analogous to that of D'Arcy) can be used to connect it with
any fluid or solid stress measure. We do extract some possibilities in Section 4 but the question
will merit substantially more consideration in the future.

We begin by providing the bases for estimates of the various limiting elastic moduli
appearing in the description of the time-dependent regimes which porous media can exhibit. In
particular, we focus on the self-consistent method of computation, so frequently used pre
viously to extract the moduli of composites from a specification of moduli and layout (viz.
volume concentrations and shapes) for the constituents. Our development has substantial
novelty, for instance in the way that we treat the addition of inclusions (to achieve the current
concentration) as an incremental process in which the energy change at each stage is computed
on the basis of current moduli (at increasing fractions of the final concentration but with shapes
and orientations exactly like the final geometry to be achieved). We treat the simple reference
case of spherical inclusions and focus also on the other revealing extreme of flat ellipsoids:
these allow us to develop transparent estimates for important effects of matrix inclusion
moduli, exterior stress orientation and non-equiaxedness of pores.

Having established that moduli do change drastically, with alterations in the effective moduli
of interior inclusions, we proceed (in Section 3) to compute typical times associated with each
regime of response evolution. These are based simply on consideration of the primary
mechanisms for relaxation (so that the shortest possible times are determined) and the general
eigenvalue procedure is merely indicated in Section 4. A dominant conclusion is that times for
inter-site and inter-element fluid exchange may frequently be found comparable in nature;
exceptions are wavelengths so long that inappreciable global diffusion occurs anyway and we
identify an obscured feature of classical theories, namely that wavelengths may actually have to
be so short (for appreciable attenuation with reasonable wave velocities) that they become
unacceptably comparable to microstructural dimensions.

2. ESTIMATION OF LIMITS FOR RESPONSE EVOLUTION

Our primary task is to establish that there are indeed drastic differences between the moduli
which the composite representative structural element of material exhibits as the times allowed
for measurement (and, often, the boundary-conditions) are varied. In standard viscoelasticity
formulations (e.g. [19]) this transition through various intermediate regimes is rather generally
attributed to internal rate processes but there is also a classical theory from soil mechanics [20]
which provides a second major source of time-dependent compliance, namely the global
diffusion of an internal species (such as pore-fluid) to adjoining "athmosphere" or adjacent
elements. Both sources are possible in the present discussion and we wish to give specific
character to some relaxation processes which are particularly relevant to fluid-saturated porous
media (e.g. in the geophysical and geological context). We shall identify various operative
mechanisms on the microstructural scale and we will need a number of approximate modelling
methods to compute the consequences for the macroscopic response of a representative
element.

(a) The self-consistent approximation
It is often the case that a single well-defined feature dominates in the distinction between the

real microstructure and that of a homogeneous single-phase material: for instance, the other
wise homogeneous matrix of primary phase may contain a distribution of second-phase
particles, or even fluid-filled pores, which is adequately described as a repeated placement of a
generic particle (or pore) with some limited order of orientation and size. If it is possible to
focus on any generic site and honestly conclude that none of the neighboring structure has an
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unavoidably discrete interaction with the chosen inhomogeneity (viz. one which cannot be
"smeared out" and blended into the overall surrounding region), then a fairly obvious modus
operandi suggests itself: this takes the form of a hypothesis that the effect of any generic
inhomogeneity site on the response of the overall structural element containing it can be
sufficiently accurately computed by considering the site to be embedded in an otherwise
homogeneous surrounding region subject to a uniform remote stress field. Clearly, a number of
variations on this computational artifact suggest themselves (e.g. gradients in the remote stress
field on the scale of the site, correllation functions for site distribution[21] or even clustering of
elementary inclusions to create a representative inhomogeneity); there is also an important
ambiguity in choice of moduli for the exterior region-which we shall help to remove in this
treatment. However, it is possible to classify the overall concept as the self-consistent
approximation.t

A most appealing version of such a general procedure is one which computes how much a
single inhomogeneity site perturbs the potential energy of the initially smooth stress field; by
adding in an appropriate number of such sites per unit volume, in a fashion yet to be decided,
the sum of perturbations in initial energy can be computed and thence the final energy per unit
volume, resulting from nominally uniform stresses, can be estimated. Since that energy can also
be expressed in terms of the stresses and moduli governing response of the composite element,
the result is an estimate of the composite moduli. This approach is, indeed, "self-consistent"
and the only major question is as to how, both in philosophy and detail, the computation for a
single site is to be made and merged with the effect of all other sites. A quantum leap in
progress on this question has been the provision of solutions for "the inclusion problem"
(especially in [22, 23]t), including the extreme case of a flat crack (more recently exploited, for
general shapes in [6,7]); for special but useful site idealizations, these allow us to compute the
energy perturbations referred to above. What has not been so clearly established, and hence
merits more careful discussion here, is which exterior moduli we should use in performing the
estimates for a single site, since sufficient density of sites can change the effective moduli
appreciably. If site concentration is dilute there is negligible computational ambiguity (e.g. as
first treated in [5] for flat cracks), and if it is too great the basic assumption of the
approximations becomes untenable (although the estimate may still not be bad in certain cases,
e.g. twin solid phases); however, there is an intermediate level of site density (with accompany
ing moduli modifications by factors of 2 or more) where the question really does seem
worthwhile pursuing, even from the viewpoint of physical reality (as indicated by some
experimental results, e.g. [24]).

(i) Solutions for ellipsoidal inclusions (Fig. la). To clarify the procedure and identify some
controversial questions, we shall schematically trace the methodology for estimating the moduli
of a homogeneous isotropic solid matrix (shear modulus 0', Poisson's ratio p'), containing a
distribution of ellipsoidal inclusions,§ which may be constituted of solid or fluid; shapes may
include crack-like limits yet still strongly affect moduli, as we shall see. A central feature is the
result of Eshelby[22] (expounded upon in [23]) that the stress or strain field in such inclusions is
actually uniform. If we use E:j'c to denote that field and suppose it results from a remotely
applied strain d (or stress u~:::= LijklE:' where L is the fourth-order isotropic1[ elasticity tensor
of the surrounding matrix), then the remarkable result is most readily interpreted in the form

(2.1)

tIt is worth noting (e.g. see [21] for further discussion) that the first-order approximate solutions for exact integral
formulations [8], which are claimed to be self-consistent, seem to coincide exactly with the hypothesis just outlined: indeed,
such formulations demonstrate that many more sophisticated techniques may be generated to permit more exact
descriptions by numerical computation. However, we are concerned here with schemes of which an available analytic
solution (like that of Eshelby) can form the basis. Thus, if we knew the solution for adjacent pairs of inclusions (analogous
to two spheres in Stokesian flow, as a model of settlement) we could probably improve our estimates: in such integral
schemes, the corresponding improvement requires the rather tedious incorporation of second-order terms [e.g. 33].

tin fact, we shall adhere to the relevant observations and notiiiloiiof Eshelby, iis-ciOsely~as-bievlty-wili permIt, in this
paper: we do this for co-ordination with previous work and to avoid excess formalism (in which terminology has to be
greatly distended anyway in preparation for quantitative estimates). When we merely wish to outline the computational
scheme (e.g. [21] for the anisotropic counterparts of results presented here), we find the provably equivalent equations of
Hill [3] more convenient as starting point.

§Fairly general results may be derived without specific reference to shapes of phase distributions (e.g. [3], eqn 2.4 of [I]
and eqn 2.26 of [23]) but actual computations typically require such assumptions.

~Corresponding (but less tractable) results are available for anisotropy (e.g. see [25]); their use is traced elsewhere [21].
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where E ~ corresponds precisely to a transformation (plastic or misfit) strain of the kind which
would be considered in trying to fit a dislocated ellipsoidal piece of material back into its
original slot in an otherwise perfect matrix (this was the fundamental problem which led
Eshelby to his most significant results). The shape factors S iikl arise in connection with such a
misfit problem (and will be provided below); by a simple sequence of "cut and paste"
operations for the inclusion, Eshelby[23, eqn (4.5)] deduced a fairly obvious implicit equation
for E ~, which we generalise as

(2.2)

where asterisk or tilde apply to the inclusion or matrix properties, respectively. As well as this,
it is a straightforward matter (e.g. [23], eqns 4.13-4.15) to prove that the change in elastic
potential energy of an extensive body, due to the introduction of a single inclusion of volume
Vi, has the very simple form

where the isotropic specialisation reduces to

A == 2GII/O- 211)

(2.3).

(2.3h

and we use superscript j to indicate that the inclusion may be one of many present in the
matrix. Clearly, eqns (2.2) and (2.3) now allow us to add up the changes in energy due to
expansion of an appropriate number of inclusions, thereby computing how the total elastic
strain energies (and hence the moduli) change from G S

, lis, viz. as inclusions "swell" to form
the final composite matrix.

Considerable simplification of eqn (2.2) may be achieved by choosing the Cartesian
reference system along the principal axes of the ellipsoid (magnitudes ah a2, a3 respectively); in
the isotropic case most of the components of S iikl then become zero and only entries of the
form SJJJJ, SJJKK, SJKJK = SKJJK = SJKKJ remain. t As Eshelby remarks, this implies that shears of
any particular sense (e.g. E'{;) produce shears of the same sense only (Ef2) while extension
strains are completely uncoupled from shear-strains. In fact, this same remark applies further to
the relation between E~ and E~ (eqn 2.2): the consequence is a very simple relation between
shear strains*

J'¢ K. (2.4)

However, there is still an awkward coupling between extension strains which must be resolved
before eqn (2.3) can be computed. This dependent triplicate in eqn (2.2) can be simply rewritten
as a 3 x 3-matrix equation of the kind

(2.5)

The elements of [M] and [R] are readily extracted from eqn (2.2), namely

RJK = (A - A*) +2(0 - G*)8JK•

(2.6)

The only hitherto undefined quantities appearing are the shape factors

(2.7a)

tCapitaI indices will not follow the Einstein notation of summation when repeated.
fWe note that [4] appears to have errors here (ref. eqn 6) and elsewhere. It also explicitly inverts eqn (2.5) for Eh; we

retain a simpler structure in order to bring out the significance of intermediate results such as actual stresses induced in
inclusions (especially for flat extremes, e.g. as practically relevant for calibration of "ftatjacks" in rock engineering).
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(2.7b)

(2.7c)

where the integrals II, III and 11K of [22, 23] are given, in mnemonically more efficient notation, by
the following comprehensive formulae

d(u)=V(a\2+ u)(al+u)(al+u). (2.7d)

Here we get IK for n =0, m = 1, or IKK for m =2 and hK for n = 1 = m, and so forth. The
integrals in eqn (2.7d) are actually just appropriate combinations of elliptic integrals of the first
and second kind[22, eqns (3.9H3.16), 26, p. 589], and the shape factors in eqn (2.7) have
previously been computed in a number of contexts [e.g. 27, Appendices of 28, 29]. Of particular
interest are the cases of an oblate spheroid (at =a2> a3) or a prolate spheroid (at> a2 =a3),
when the integrals are expressible in terms of one fundamental combination of elliptic integrals;
for the oblate or prolate conditions, respectively, those basic integrals are

(2.8a)1

(2.8b)1

The other integral is defined in the respective cases by

(2.8a,bh

Now the integrals in eqn (2.7) take the form, again for oblate and prolate spheroids, respec-
tively: .

while a general formula to be kept in mind is

(2.8c)

(J"#K"#L). (2.8d)

Spherical inclusions. The simplest example is the case when the inclusion tS spherical,
a3 ..... a2 = at; by use of eqns (2.8h or careful expansion of eqns (2.8)1. we obtain

(2.9a)

Fig. I(a). Schematic of a typical spheroidal inclusion (Lame constants .I. 0, GO) perturbing a strain-field
which is remotely uniform in a medium with effective moduli A, G.
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Thus the shape-factors in eqns (2.7) become

[5KKKK, 5JJKK, 5JKJK ] = [9 +5(1- 2ii), 3 - 5(1- 2ii), 8 - lOii]/30(1- ii) (2.9b)

from which we can deduce the matrix [M] in eqn (2.6), having components

{~: } = e~} + e2~~ :O:}(G* -0)/30(1- ii) + (1 + ii)(A*- '\)/3(1- ii) + A. (2.9c)

The case of a remotely applied shear strain EtK (J f:. K) is easiest to solve; indeed, from
eqns (2.4) and (2.9b), the result is simply

EJK = f3tEtK, f31 == 15(1- ii)/[15(1- ii)g/(g -1) - 2(4- 5ii)], g == O/G*. (2.9d)

The only other independent case is that of remote hydrostatic strain EfJ == eA/3, J = 1,2,3;
inspection of eqn (2.6a), with the form of [M] in eqn (2.9c), immediately shows that d'K must
be hydrostatic as expected. Thus, only one of the eqns (2.6a) is needed, namely

It is now trivial to compute the energy perturbation due to the presence of a spherical
inclusion in a matrix under remote combined shear and hydrostatic stress, namely

(2.9f)

This can simply be summed over the number of inclusions to get the total energy change, which
is therefore clearly proportional to volume concentration when measured per unit represen
tative element of material.

Flat inclusions. It is most worthwhile to compute asymptotic expressions for the shape factors
as at/a3 grows very large (i.e. for flat or crack-like inclusions): then the integrals are

(2.10a)

and eqn (2.7) gives the shape factors

53322 = 53311 "" [ii - 7Ta3(1 +4ii)/8atl/(l- ii)
(2. lOb)

7Ta3 [7-8ii]
51212 = 52121 "" 32al 1-;; ,

7Ta3(1 - 2ii)51133 = 52233 "" -- --
8al 1- v

7Ta 3(2 - ii)52323 = 51313 "" 0.5 - 8al 1- ii .

Components of matrix [M], eqn (2.5), are now very readily deduced from eqn (2.6).
For our purposes, the most general case of interest is that of an external strain state

Eft =E~ =eA /3; we seek EkK from eqn (2.5), which now reduces to two coupled conditions:

2['\ + 6 + ii(A*-'\)/(1- ;;)]Eh + [A*-7Ta3(1- 2;;)(2A*-2'\ + G* -0)/4a,(1- ii)]Ef3

= [K - K*]eA +(,\ - A*)(E~ - eA 13) (2.11a)1
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2[A + ii(A * - A+ 20* - 20)/(1- ii)]E fl + [A * + 20* - 1Ta3(A* - A+ 0* - 0)(1- 2ii)/

2al(1- ii)]Eh = (K - K*)eA+ [A - A* + 20 - 20*](E3\ - eA/3). (2.11ah

Here we have retained terms of order a3/al only if they are to affect results even when 0* or A*
grow very small. The general solution of eqn (2.11a) is straightforward and takes the form:

where

[flo f21 = [K - K*, A- A:](1- ii)/(1 + ii)(A * + 20*)g
(2. 11b)

!J;;: [g(1 + ii) - 2ii]fI/(1- ii), f4;;: (g - 1) + [g(1 + ii) - 2ii]f2/(1- ii).

It is especially interesting to compute the resulting stress-state in the inclusion

{
UII}iDC = [A*3K + 40* 20*] A/3 + ( A_ A/3)[A * A+ 20 {O}]
Un A*+20* + e E33 e A*+20*+ 20* (2.11c)

which becomes hydrostatic and equal to the normal applied stress u3\ whenever 0*/0 is
negligible (a verification of the assumption commonly made in this context).

On the other hand, we are also interested in a remote shear strain E1K (J ¢ K) and then we
find, using eqns (2.4) and (2.10b), that

J¢K. (2. 11d)

The energy associated with the presence of the inclusion under any combination of the
distinguishable remote stresses Ut2' Ut3, u~ and U:3 may now be estimated directly from eqn
(2.3), with the aid of solutions given in eqns (2.11b-d).
Soft flat inclusions. It will be noticed immediately that an expected degeneracy develops in
eqns (2.11) when the inclusion stiffnesses (A*, 0*) become smaller than those of the matrix
(A, G) by factors comparable to al/a3; it is then no longer adequate to neglect the second-order
terms in eqn (2.11a). For instance, let us choose the extreme case 0* = 1Tya30/4al (but A* still
finite, viz. v* =0.5): then, most obviously, ElK (JK = 13.23) goes unbounded in eqn (2.11d)
unless we add in the additional second-order term in eqns (2.10b), with the result

(2.12a)

However, all of the other strain ratios are of order unity: eqn (2. 11d) gives the third shear strain
(E r; =Et2) and eqn (2.11b) simplifies to

Efl =-(1- ii)(d3 - eA/3)/(1 + ii),

Ef3"'" [(K - K*)eA+ (3K - A*)(1- ii)(E:3 - eA/3)/(1 + ii)]/A *.
(2.12b)

Nevertheless, we must emphasize that eqn (2.12b) arises after an elimination in eqn (2.11a)
which generates the intermediate equation

(2.12c)

and eqn (2.12b) must be modified if ever Eh becomes of order al/a3' Equations (2.11b) and
(2.12b) are again a formal indication of another statement commonly made from simple physical
considerations (e.g. in [6]) that the surfaces of a flat inclusion are "glued in place" (viz. exhibit
negligible convergence) due to the presence of material (e.g. fluid) with non-negligible bulk
modulus; such sites will wreak little alteration in K.

Clearly, the expression for EfJ in eqn (2.12b) cannot be valid if A* becomes less than A, 0 by
factors of order al/a3; under that condition, a3Ef3/al is not negligible in eqn (2.12c) and we must



802 M. P. CLEARY

rather insert back into eqn (2.11a) to get, employing A*== 1T'AAa3/4a(,

d; = 4g j [(E)\ - eA/3) +(1 + v)eA/3(1- v)]ad1T'a3,

where

(2.13a)

gj == (A +20)(1- v)/[20(1 + y - yv) +AA(1- v)]

g2 == [1- 2v +2y(1- v)]/2(1 + v), g3 == gl[y +(1- 2v)/2(1- v)]. (2.13b)

These results establish a very important conclusion, namely that the strains in the remote
stretch direction (parallel to the minor axis of the flat oblate low-modulus spheroid) are indeed
intensified in inverse proportion to the flatness ratio a3/aj; thus, for both tension and the
analogous shear result in eqn (2.12a), the energy in eqn (2.3) does not grow vanishingly small
with a3/at but rather reaches a finite limit depending on matrix and inclusion moduli. A case of
particular convenience for later computations is that of uniaxial remote tension 0')\ (i.e.
eA = -3iiE)\), for which the transformation strains are Eft (= Eh) of order unity and

(2.13c)

It is readily shown that purely in-plane stresses (uf.. 0':2) induce strains ElK of order E1K so that
Only'U13 (J= 1, 2, 3) actually involves non-negligible energy changes as a3/at--'tO.

(ii) The problem of orientation distributions. Since the generic inclusion just considered can
be arbitrarily oriented with respect to the remotely applied stress field, we must integrate and
normalise over all possible orientations to get an appropriately averaged energy perturbation. t
Here we have the simplest case of an isotropic (viz. directionally unbiased or random)
distribution, althollgh the methodology naturally carries over quite readily to special kinds of
anisotropy (e.g. more realistic orthotropy), particularly when these are induced by the nature of
inclusion orientations. For the isotropic composite the problem is trivial in the case of hydrostatic
stress but a remote tensile; stress (say uxx ) induces stress components, in the natural coordinate
system of the spheroidal inclusion, which we list here in terms of their energy-related
distinguishable quadratics

Uf2 = efte~ju;X' U~3 = e~tU~, (0'11 +u22f = (eft + e~t)2u~

Uf3 + U~3 = e~l(efj + e~t)u~ = (0'11 +0'22)0'33 (2.15a)

where ejj (== cos (Jib Fig. la) is the usual "direction-cosine" or projection of the ith natural
coordinate of the inclusion of the jth coordinate of the fixed x, y, z system in which the remote
stress is expressed. Very simply, then, we need the unbiased average over all their values, of
the various coefficients appearing in eqn (2.15a). The computations are quite simple and lead to

(2.15b)

where the carats in the present case imply an integrated average of coefficients with equal
probability of finding any of the possible values of each of the angles with cosines appearing in
Cj. For ordered site distributions leading to anisotropic composite moduli, the quantities in eqn
(2.15b) would have to be weighted with the greater probabilities of finding XI. X2, X3 axes (natural
to the inclusion) in particular orientations with respect to any fixed X, y, z axis.

The general result obtained, when we considered the energy perturbation due to the
presence of a spheroidal inclusion in an arbitrary remote stress field, was (in terms of constants
YK deducible from Section (i» that

(2.16a)

tThis orientation averaging seems to be neglected by some authors at the stage of explicit modulus computations.
tA slightly less transparent procedure may be followed for remote shear stress (e.g. O'~,).
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When we are considering a spherical inclusion or a hydrostatic remote stress this may be
applied directly by replacing 0"11 by O"xx. 0"12 by O"xy, etc. but the more general case requires us to
use eqns (2.l5a) and (2.l5b) for uniaxial stress and the result is

(2.16b)

REPRESENTATIVE MICROSTRUCTURAL ELEMENT. VOLUME V

R.=C./C

R.. = c../c

Fig. l(b). Representative choice for·a generic sample of microstructure, considered adequate to constitute an
isotropic continuum element; the process is depicted whereby inclusion concentration C is increased by

self-similar stages as the volume VUI of each site is expanded in proportion to the rise in C.

(iii) Choice of exterior moduli and incremental process of inclusion addition. We propose
here a philosophy for computing the overall modification of solid matrix moduli, due to the
addition of any suitable density of second-phase inclusions, which differs significantly from that
typically adopted in previous literature on this subject.t Let us suppose the remotely applied
stress is O"~ (so denoted to express a component in a fixed system, X, Y = x, y or z) and that
eqns (2.16a, b), with the aid of Section (i), have led to the energy perturbations (using M to
denote the compliance conjugate to O"XY)

(2.17a)

Then the change in energy per representative volume element of composite (V), in which there
are a sufficient number N of arbitrarily-oriented inclusions (Fig. Ib), is

(2.17b)

We easily recognize that a change in the ambient moduli accompanies each increment in the
volume concentration:j: of inclusions C and that the limit of small increments yields

M C

f dMIM = In(MIM S
) =- f r dC.

M' C'

(2.17c)

tThe exceptions in [30, 34] have come to my attention; the present approach seems to be distinguished by potential for
descriptive generality and confirmation by more rigorous formulations [e.g. 33].

*Notice, however, that the limit of very ftat(vii. llegJlgiblevolume) inclusions requires that Vi (and thence C) be
redefined as volume x major axis/minor axis, as shown by results in Section (i).

SS Vol. I•• No. 10-8
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Equation (2.17c) differs from the conventional expressions for effects of inclusions on
moduli [e.g. 1,4,6, 7] most obviously in treating inclusion addition as an incremental process in
which, for computation purposes, the self-consistent approximation is applied successively at
each of a continuous series of inclusion densities between the initial density CS (with known
compliance M') and the final concentration C (with unknown compliance M). It is, thus, as if a
desired orientation distribution is preserved throughout the process but the volume of the
inclusions are "pumped up" synchronously from initial to final sizes. The results of this artifact,
which removes the ambiguity in choice of effective moduli for the equivalent continuum
surrounding any generic inclusion, will depart substantially from those where eqn (2.17b) is
applied in only a single increment (l1M) from initial to final moduli (with either of these, M S or
M, being used as the effective compliance). Thus, the assumption of previous authors that the
dilute concentration idealization (choice of M S for exterior compliance) is best extended to the
more general case of "inclusion interaction"t by employing M for the exterior compliance, in a
single-step transition from C' to C, is seen to be essentially unfounded; they may, occasionally,
produce estimates which lie closer to reality [e.g. 31] but this would have to be regarded as a
serendipitous coincidence with the results of discrete interaction effects at high densities.

Example 1. Shear modulus of composite with rigid/porous spheres. From eqns (2.9f, d), we
observe that the energy function in eqn (2. 17a) is

rG:; -15(1- ii)/[l5(1- ii)g/(g -l)-2(4-5ii)], M:; 0-1
, g:; 0/0*. (2.18a)

For two simple limits, g -+ 0,00, r becomes independent of M; however, r is not independent of
C unless ii is unaffected by inclusion addition. For analytical demonstration purposes, suppose
the matrix and inclusion material is relatively incompressiblet (ii "" 0.5): then r becomes 5/4 and
-5/3, respectively, for the limits just mentioned. More generally, if ii does happen to remain
relatively constant, the consequence of eqn (2.l7c) is that shear modulus Os changes, with
addition of spherical inclusion concentration C - CS, to a new· value given by

In(O/OS) = 15(1- ii)(C - CS)/e5~ ~O~}, g = {~}. (2.18b)

This equation implies an exponential increase or decrease of shear modulus with inclusion
concentration; clearly, the fact that moduli are not zero or infinity,§ respectively, for unit
change in volume concentration is an aspect which reveals limitation on the validity of the
assumptions for high concentrations viz. intersection of inclusions. However, we emphasize
that the theory does not recognize such intersection (viz. fracture or rigidity) and there is no
basis in the theory for the assertions (e.g. [6]) that zero moduli are to be expected at sufficiently
high densities of porosity.

Example 2. Tensile modulus of composite with flat shear-compliant inclusions. By referring to
eqn (2.12a), we conclude that the appropriate translation of eqn (2.3) into eqn (2.17a) involves
the use of energy perturbations due to shear only (since A*, comparable to A, seals the inclusion
faces), resulting in

(2. 19a)

It is now easy to identify the consequent relation, by eqn (2.16b), to an imposed tensile stress
u~, namely

l1Ei = {8(1 + ii)/151T[ 'Y + (2 - ii)/(1 - ii)]E}U;"l1(41TaI3/3)Ul. (2. 19b)

tClearly a misnomer for. more precisely, the condition that inclusion density is great enough to alter composite moduli
by fractions of order unity: strong discrete interaction actually renders the surrounding continuum assumption untenable.
unless[21] clusters of inclusions are employed in computing single-site energy perturbations.

nbe only other physically realistic choice is ii "" 0.2; this gives equal positive and negative coefficients (+ 2, - 2) in eqn
(2.lSb) and similar behavior for M '" K-1

, so ii does remain constant with inclusion addition.
_. TNotice that G must become comparable to Aeventually. which formally invalidates the derivation for ii "" 0.5.
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Here we are clearly adopting an inclusion growth at constant "aspect" ratio a3/at and have
employed the equivalent volume 41rat3/3, rather than the actual volume (much smaller and
unrepresentative of inclusion density). By comparison with eqn (2.17a), we can now deduce

r E :::. -16(1 + ii)/151r['Y +(2- ii)/(1- ii)], In (EIE,):::. I-'E(C - C,) (2.19c)

where the latter rough estimate is rigorously valid only for constant ii.
However, rather than ii constant, the more reasonable statementt is that flat inclusions of

A* comparable to Ado not appreciably alter the bulk modulus K'; it follows that E/3(1- 2ii) =
Kis essentially constant and a more accurate estimate than eqn (2.19c) can then be worked out,
having the form

In[E2(3 - EI3K')(1 + EI3K')]~' = -16(C - CS )/151r. (2. 19d)

Although this may appear to give totally different predictions from eqn (2.19ch it will later (in
Fig. 2) be clear that the estimates are, in fact, quite close and this feature will be found to apply
over a range of conditions: thus, eqns (2. 18b) and (2.19ch do give a very good impression of the
modulus variation with inclusion concentration, one which is usually not drastically altered by
(fortuitous) analytical results like eqn (2.19d) (and its analogue for spheres, using constant K in
eqn 2.18a), or by the more detailed numerical results to be discussed next.

Example 3. Shear and bulk moduli with spherical inclusions. If we are to find the concentration
dependence of ii for use in eqn (2.18a), then we must simultaneously solve for the changes in K
(with varying inclusion density) by identifying r K, corresponding to Uxy =Uxx =U yy =U zz =
KeA in eqn (2.17a); from eqns (2.ge, f) it clearly takes the form

f K = -3/[3kl(k - 1) - (1 + ii)/(1- ii)], k == KIK*, M == K- t. (2.20a)

For the special cases k = 0,00 and a (generally artificial) fixed choice of ii, we again get an

exponential growth of moduli, analogous to eqn (2.18b), namely

k={~l (2.20b)

However, the realistic physical situation does not usually maintain fixed ii (a better estimate
being 0 fixed, for some instances); thus, in general, we must rather use rain eqn (2.18a) and
f K in eqn (2.20a) to solve the simultaneous differential equations

dOlO =fo dC; K == 2G(1 + ii)/3(1 - 2ii) (2.20c)

on the interval over which C varies from CS to its final value. These computations have been
conducted for a variety of lIs, gS, kS and the resulting variation of G, K (or " marked
occasionally on plots) is shown in Fig. 2.

Example 4. Tensile and bulk moduli with flat inclusions. A coupling of the incremental moduli
equations, analogous to that in eqns (2.20c), must also pertain to the opposite end of the
ellipticity spectrum, namely the case where a31at is very small while G* andlor A* is smaller
than G(or A) by factors of order at/a3. We already have considered the special case where A*
is comparable to A (eqns 2.19d) so we now treat the more general situation where both G*
and A* are small. Extraction of 'Y3, 'Y4 from eqns (2.12a, 13a) and insertion in eqn (2.16b)
produces the incremental relations for tensile stress, namely

dElE dC == f E= -4(1 + ii){4/[ 'Y + (2 - ii)/(1- ii)] + 3(1- ii)/[1 +(1- ii)( 'Y + Aiil(1- 2ii»)]}/151r.
(2.21a)

tIt is worth noting that j; =0.5, 0.0 are, in fact, values at which Poisson ratio can remain constant, just as j; =0.5, 0.2
were specially admissible for spherical inclusion addition.
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Fig. 2(a). Dependence of shear modulus on inclusion concentration: parameters are initial Poisson
ratio, equi-axedness, inclusion sbear and bulk mod.\lli (v', S(F). g'(y'), k'(A'), respectively). For
spheres (S) the curves for g> I are similar to those sbown for g < I. Isolated numbers indicate
variation in ii. Curves chosen bound interesting range or indicate trends, especially for flat inclusions

(P).

Fig.2(b). Bulk modulus variation witb concentration C and parameters II', S or F. g' or r', k' or A'
(reported in tbat order). Bebavior for k > I is almost mirror image of tbat sbown for k < I and cbosen
curves indicate bounds or trends: more complete results have been worked out and a simple program
(on programmable pocket calculator) is available to compute tbe curves for any specified initial values

of tbe solid and inclusion material parameters.
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For the case of hydrostatic stress (corresponding to strain eA /3 in each direction) the only
component contributing appreciably to the energy is that of uniaxial stressing perpendicular to
the "plane of the inclusion"; thus, from either of eqns (2.13a, c), we can obtain the required
function r K for M = K-1 in eqn (2.17c). The resulting set of simultaneous differential equations,
analogous to eqn (2.20c) and with rEdefined by eqn (2.2Ia), take the now familiar form

dElE = rE dC, dKIK = rK dC;
r K == 4(1- v)(1 + ii)/31T(1- 2ii){1 +(1- ii)[y + Aii/(1- 2ii)]}.

(2.21b)

Again, we have computed the implications of eqn (2.2Ib) for a variety of vS, yS, AS; the resulting
dependence of G, K (and occasionally v) on C - C is shown in Fig. 2.

(iv) Extension of spheroidal results and related computations. Inspection of eqns (2.l2a) and
(2.13c) and use of eqn (2.1) shows that the relative displacement ~ between flat faces of the
inclusion, namely 2a3ETi for the constant inclusion strain (hence approx a3E iJ and 2a3Ef3'
respectively), takes the form

~ = 2al(1- v) { oot~G[2 - v+ y(1- ~)] }
1T 2ootJ/[2G(1 + y - yii) +AA(1- ii)]

(2.22)

for an externally applied shear stress ootJ (or 002\) or tensile stress 00:3' When y::>: 0::>: A we
recognize the results for a "penny-shaped" crack, familiar in the fracture mechanics literature
(e.g. [32]): this immediately suggests an extension to more general crack shapes by simply using
available solutions for ~ (e.g. those in [32] fo!_plan~~Jliptical internal crack surf~ces), thus
avoiding the computation of the general elliptic integrals in eqn (2.7d), which are as tractable as
eqns (2.8) only for that special case.

However, Budiansky and O'Connell [6, 7] have explored this general area of specialization
quite thoroughly: their estimate of the energy perturbation due to the presence of distributed
elliptical cracks, eqns (8), (25) and (33), is readily substituted into our differential eqns (2.17). In
fact, the only distinction between our equations would be a redefinition of the kind

(2.23)

where L stands for any modulus to be determined; for instance, eqns (35, 39) in [7] give r K and r E
respectively. Thus, their methodology [l.h.s. of eqn (2.23)] is deceptively like one term in a
Taylor expansion of the exponential variation of moduli which results from a rigorous alteration
of crack density by differential steps.t Nevertheless, Refs. [6,7] do demonstrate the important
(energetically predictable) result that shape of crack surface does not substantially affect the
variation of moduli with crack density (e.g. see their Fig. 7): thus, our ability to include y and A
for elliptic cracks [after computing the general integrals in eqn (2.7d)] does not have sufficient
physical importance to warrant its pursuit here. Likewise, it is perfectly straightforward to
deduce and solve the differential equations (corresponding to 2.17) for the other extreme of
prolate spheroids viz. long cylindrical inclusions or pores (of the kind often assumed in
somewhat artificial porous media models e.g. [14, IS]); although some such computations,
requiring the modifications implied in eqn (2.23), have actually been pursued, e.g. [4], we
consider that they have little demonstrative value here (e.g. see [24] for some pore results).

(b) Other models: high inclusion densities, asperity contacts
It is quite clear from the preceding section that our particularly tractable implementation of

the self-consistent concept does not extend reliably to very high concentrations (especially of

tWe note that this inconsistency in the approach of Ref. [6] has been pointed out also in Ref. [34]. However, all of these
authors proceed by integrating the energy release rate around the perimeter of the crack surfaces and they obtain the latter
from the squares of stress-intensity factors (through the familiar formula of fracture mechanics), using the effective moduli
of the medium to make the conversion: in fact, the crack will be growing locally through a medium with moduli G', ,,', and
it is rather the usual expression for stress-intensity factor which has to be modified, due to the inclusion character of a
crack in a region with moduli G', ,,' surrounded by an exterior with moduli G, ii (e.g. see analogous shielding effect in
Chap. 5 of [13]). Our present use of Eshelby expressions for energy, apart from allowing ready inclusion of 'Y and A,
avoids this bothersome rationalisation (completely ignored in [6,7,34]).
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very stiff or very flexible inclusions): one obvious (but not necessarily primary) reason is that
any generic inclusion eventually senses the discrete presence of nearest neighbors and the
effective continuum model of surrounding-microstructure begins to break down. An improve
ment might be made by establishing the solution for a group of inclusions in an otherwise
homogeneous medium (thereby accounting for interaction to some extent). Only a few such
solutions are available to us [21] and we consider that a detailed investigation of their
consequences is not merited, simply because a more serious problem is the inevitable "cluster
ing" of sites which may create larger effective inclusions (perhaps traversing the sample):
except perhaps for comparable solid phases, this linking-up (which is the only possible rationale
for claims [6,7] that stiffnesses dissappear at high pore densities) obviously falls beyond the
scope of all deterministic self-consistent models (especially those employing compact Eshelby
type results). To broaden the perspective just a little, we allude here to a few other major
techniques which must not be ignored in attempts to derive adequate estimates for response of
porous media.

(i) Integral equation and discretization techniques. One option is to attempt explicit solution
for the composite response of an actual body containing a distribution of inclusions, pores or
randomly oriented crystals (e.g. [8,35] and [36] for analogous permeability estimates): if the
distribution adequately represents the microstructure (in the sense of layout and adequate array
of elements) then the effective moduli obtained should closely approximate the real behavior of
a representative microstructural element. One efficient basis for such numerical estimates is the
establishment of a suitable fundamental solution for misfit strains in the aggregate [e.g. 8]; such
misfit strains are, essentially, distributed to simulate the aggregate departures from homo
geneous response but no assumptions of uniform inclusion strain are required and the
surrounding composite is not a priori necessarily regarded as an effective continuum (although
estimates obtained thus far have involved exactly such a specialization). Despite the appealing
analytical basis for such integral equations, their actual numerical implementation may not have
substantial advantages over a simple finite-element computation, in which a sufficient number of
suitably oriented elements (with native stiffnesses) is distributed to represent an element with
properly parameterised remote stress or strain conditions. High densities of heterogeneity sites
will certainly overwhelm the usual appeal of singular integral formulations in (semi-) infinite
regions but their generality is still appealing as a starting point for specialization[21]; indeed,
accuracy of finite elements will require some ingenious mesh design.

(ii) Discrete structural connectivity, granular media. An extreme example, where compact
continuum models lose their validity, involves a fibrillous structure (e.g. textiles, laminate clays)
for which only a discrete structural analysis (e.g. of a space framework) may provide reliable
estimates [21]. Another extreme is the case of a granular solid matrix in which porosity is
present due to the inability of grain shapes to completely fill the effective occupied space of the
material. Here the assumption of uniform inclusion strain is clearly unrepresentative, since the
dominant compliance of the structure comes from the asperity-like contact at the interface
between grains. Various Hertz-type contact models have been constructed to establish the
overall (macroscopic) moduli resulting from a regular array of such singular load-transmitting
points in a representative element: some particular computational results are provided in
[37,38,16] and reviewed in [17]. Dominant features are the strong non-linearityt (with the usual
Hertzian form), the fact that resulting moduli are not simple combinations of component material
moduli, and the oft-neglected potentially intense variation in composite stiffness with fluid moduli
(when the latter are comparable to matrix stiffnesses); such observations remind us, especially of
the diverse considerations needed to achieve a reliable estimate for the incremental moduli of a
heterogeneous aggregate with multiple sources of additional compliance or stiffness (apart from
the basic moduli of the constituents). Results in Fig. 2are, therefore, to be treated as demonstrative
only in studying the magnitudes of transitions between the various regimes discussed next.

3. REGIMES AND CHARACTERISTIC TIMES OF TRANSITION

BETWEEN LIMITING STIFFNESSES

In Section 2 we outlined the techniques for computing the various elastic limits of response
as internal local relaxation or global diffusion occurs between sites containing fluidic elements.

tNonlinearity results also from crack closure in Section 2(a), an effect under separate analysis (toward medium-amplitude
wave propagation and stress-induced permeability changes).
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In order to appreciate the timescales, on which such distinctions between moduli can be
important, we now elaborate on previous discussions [39), identifying some of the typical
mechanisms for internal redistribution of stress and estimating their primary (or characteristic)
times of occurrence.

(a)

t--- 2 Q -------l

________--,?_ OJ: I (1'r.",

Fig. 3(a). Schematic of the various inclusion shapes of importance in considering the regimes of relaxation
for an element under exterior stress; intra-site ftuid transport is indicated in the tabular pore, as against
uniform shear in ellipsoid. (b). Illustration of computation for microstructural mechanism of time
dependence (which will produce a characteristic time of order IYlh 3

): a matter-fined inclusion under major
stress 0'1 (pressure PI) "squirts" fluid into an adjacent site under lower stress 0'2 (and pressure P2).

(i) Relaxation of completely isolated sites (0, v-.G, v). Fig. 3(a)
The concept here is that each of an arbitrary number of isolated sites, containing a specific

source of time-dependence, independently transfers some (or all) of the stress upon it to the
surrounding matrix, thereby altering the amount of elastic stored energy in the stressed
continuum element, assumed well-defined as containing a representative distribution of such
sites. A specific example is an array of globules of viscous fluid (or solid) in an otherwise elastic
matrix: instantaneously these exhibit a stiff elastic response but then they relax with passage of
time, for instance even completely shedding tbe shear-stress upon them. If ILl are represen
tative measures of viscosity for these inclusions and Lk are the moduli dominating the amount
of elastic deformation which the globules will undergo, then these primary characteristic times
must be

(3.1a)

Here al(J) and a3(J) are meant to represent the dominant dimensions of the jth class of
inclusions; they appear because we observe tbat the amount of shear-straining (rate of which is
governed by ILl), for a given amount of stress-transfer by the inclusion (which L k convert to
relative offsets across the inclusion), is strongly influenced by the degree to which inclusions
are flat or spherical. Further, relaxation times will also be influenced by the overall geometric
array of inclusions, denoted mnemonically here as a structure s, an effect which we will crudely
blend into the response moduli Lk; bowever, we emphasize the separate effect of s when strong
elastic interaction between sites (e.g. close parallel distributions) renders untenable the self
consistent or effective models for the outside matrix. Equation (3.1) simply says that various
viscosities, moduli and geometry of both individual inclusion classes (through the multi-variable
function fa) and the overall array of inclusions (through the multi-variable function ga) will
affect the characteristic times for continuum element viscoelasticity resulting from individUal
site relaxation. This is a situation familiar in other relaxing materials (e.g. polymers) where a
wide spectrum of characteristic times (e.g. [40]) typically result from a range of micro
mechanisms: there is some advantage in the present situation, however, since the times are
actually formally computable when the geometry and moduli of inclusions and matrix are
specified.

As an example, we consider the case where inclusions are all roughly ellipsoidal in shape
with similar ratios of major to minor axes, alh; the globules are regarded as instantaneously
rigid but as having negligible long-term shear-moduli (viz. fluidic in shear), while bulk moduli
undergo negligible change in time. The exterior composite, of solid matrix with relaxing fluid
inclusions of random orientation, also has a time-dependent effective shear modulus, which
appears in the the self-consistent computation of time-dependent moduli, but it will be adequate
(for estimates of characteristic times) to use a single average modulus L which governs shear
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deformation of the globule perimeter. If viscosity IL applies to each of the inclusion substances,
then the characteristic relaxation time must take the form

1'1 =(IL/L)fa(a/h). (3.1b)

The function fa will have dominant contributions from particular powers of a/h. For instance, if
the inclusion is reasonably flat (large a/h) then one clearly identifiable source for fa is the offset
13 =ua/L (due to shedding of shear stress u) between surfaces with a-axis parallel to shear:
since an effective shear-strain 'Y = 13/h results in the inclusion, it will take time l' = 'Y/(U/IL) =
lLa/Lh (omitting multiples of order unity) to achieve appreciable relaxation. On the other hand,
in inclusions with a-axis tilted at 45° to shear the stress transfer is somewhat more complex and
fa may include contributions from a3/h 3 (especially if the inclusions are rather more tabular
than ellipsoidal (Fig. 3b), since appreciable "squelching" flow of fluid must then occur from
centre to extremes of inclusion, in redistributing the initial non-uniform elastic stress).

To recognize the differences between G, Ii and G, ii let us choose the examples treated in
Section (ii), namely a matrix with effective moduli GS, /IS containing a concentration (C - CS) of
isotropically distributed flat or spherical inclusions filled with fluid. With reference to eqn
(2.18b), we note that spherical pores will cause a shear modulus relaxation by an approximate
factor

(3.2a)• - S [225(1 - ii)2 S ]

G(t = O)/G(1 ~ 1"1 = IL/G ) = exp (8 _ lOii)(7 _ 5ii) (C - C ) .

More exact estimates (analogous to 2.1ge) can be obtained by integrating eqn (2.18a) explicitly,
after substituting ii = (3Km - 20)/(6Km +20), where K m is the constant bulk modulus which
persists as pores soften in shear only. On the other hand, flat inclusions with very large
G*a/hGs (eqn 2.19c) merely "glue the surfaces together" and cause the resulting 0 to be
negligibly different from GS

; however, as they relax so does 0 and the corresponding value of
G/G can be roughly expressed as

(G = GS )/O(1 ~ 1'[ = lLa/Gsh) = exp[8a(C - CS )/15'lT). (3.2b)

where a is of order unity and is deduced from eqn (2.1ge) if the site remains effectively
isovolumetric. However, we mentioned that there may be a second contribution to relaxation,
arising from the redistribution of fluid within an incompletely saturated or multi-faceted site
,(Fig. 3(a, b». This further softening may be reasonably well described by the difference between
rEin eqn (2.19c) and rEin eqn (2.21a) with A,e 0 in gl (eqn 2.13b); as a rough estimate, these
effects will increase a by 1+3(1- 2ii)(2 - ii)/4[(1- 2ii) +'Aii(1- ii») for 1~ lLa 3/G sh3

• Of course,
the exact estimates of G/G are to be extracted from Fig. 2 but eqns (3.2) provide quite accurate
mnemonics.
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Fig.3(c). Generic element of isotropically distributed (yet polarized) pore-space with interconnecting conduits
which may have similar or much smaller characteristic dimensions: pores CI must drain into others (especially
C2) under lower stress. (d). Geometry of isolated sub-domain between fiat pores in Fig. 3(c), in the case where
they must drain into each other by diffusive fiuid transfer through secondary microporosity (and hence give rise
to "modes of consolidation"); boundary conditions (U3(t) =pressure in C3, symmetry-dictated no-fiow for

"impermeable" regions) are meant only to be suggestive.
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(ii) Local inter-site diffusion of mobile species (G, ii-+G, /lu) Figs. 3(b-d).
Although individual sites may relax rather quickly (as given by 7'1 in the previous section),

they will usually not reach equal (thermochemical) potential: for instance, fluid-like
inclusions may achieve a pure hydrostatic stress-state but the pressure in them will vary with
orientation of any non-spherical globule shape (e.g. sites of type Cl in Fig. 3(c) will sense a
stress of order Uh while those of orientation C2 sense U2 approx and C3, C4 etc. have an
intermediate induced pressure). Alternately, even spherical globules may not achieve equili
brium by isolated relaxation if a secondary porosity is present interlacing the solid matrix
between inclusions. The initial relaxation within sites must be followed by matter transport
between sites and thus a second regime of relaxation may be identified, with characteristic time
Tn (usually ~ TI). To ensure the viscoelastic character of the Tn-regime (in light of frequent
simultaneity with global diffusion, identified later) we shall presently consider an isolated
continuum element with sealed boundaries so that only internal (viz. local) transport of matter
is allowed, albeit via mechanisms which look diffusive!

Again the example chosen is a distribution of viscous globules in a solid matrix (e.g. as
shown in Fig. 3c): these have now shed their shear-stress and sustain only a hydrostatic stress
dictated by geometry and relative stiffnesses of fluid and surrounding composite. We introduce
the possibility of interconnecting fluid ducts, either as secondary matrix porosity or direct
contiguity of the sites themselves. In the respective cases, the quantities

(3.3a, b)

determine the times for transmission between sites or for fluid loss from sites to the secondary
porosity (e.g. neglecting compressibility of site fluid). Here e is the diffusivity of the porous
surrounding matrix, defined [12] in terms of the permeability K., an effective viscosity IL and an
appropriate modulus combination of fluid and solid moduli, Km ; here, also, a is the larger
representative dimension of the globule and D is typical distance between globules. The 1T

2 and
21T factors come from considering primary consolidation modes between sites (in region R
between sites, schematic Fig. 3d) or from a single site (e.g. Chap. 2 of [13], [41]); thus, there are
many other longer characteristic times (for the infinite number of secondary modes) which we
have temporarily neglected in considering only the primary part of the relaxation process.
Circumstances which allow non-negligible amplitudes of the slower modes should be kept in
mind later (when comparing Tn to TIll)'

Contiguous sites can actually "squirt" fluid directly into each other if they are sufficiently
well connected (e.g. [42]): for instance, if the sites are part of a primary porosity network with
smallest dimension h and typical transverse distance D between sites then a typical equilibrium
time can be estimated simply by imposing mass conservation on laminar flow conditions (e.g.
Fig. 3b), namely

(3.3c)

where L is again the modulus controlling volume changes of the pores (or sites) as they
increase or decrease internal pressure by fluid exchange with adjacent sites (at rate governed by
viscosity IL). The function f2 would be very strong in (Dlh)2 components if long straight
capillariest span between the major pores but an equally relevant model is a direct intersection
of misaligned non-equiaxed pores: in the latter case the strongest contribution comes from
(Dlh)3 terms while, as before, smaller effects still result from many other powers of Dlh
(analogous to the multitude of terms in f1 earlier), thereby increasing the possible values of Tn
for inclusions with very low aspect ratio.

As before, it is essential to have estimates for the order of transition from G, ii to the values
G, /lu which apply when all of the sites have achieved equal potential (e.g. fluid pressure). The
case of spherical porosity is unique in the sense that G, ii already correspond to essentially
unbiased potential distributions between sites (it being impossible to identify a particular site by

tThis is one repeatedly used by Biot[l4, 15) to lend plausibility to his wave theory. Resulting estimates for critical
frequencies thus contain deceptively similar geometric parameters. Indeed. curves for attenuation and dispersion have cenain
similarity to ours (trivially computed from T(i/k) and limiting moduli [e.g. 41) but the range of relevance must be carefuUy
distinguished.
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orientation) and only minor sources of further equilibration appear (e.g. fluid exchange with
secondary porosity). Thus the solution of eqn (2.2Oc) with G*/G =0, and K*/K appropriate to
the ratio of fluid to solid bulk moduli, provide good estimates of both G, ii and G, lIu' However,
when any ellipticity is present, there is clearly a general need for further flow of fluid, within a
representative continuum element, before potential polarization is completely removed. When
this has taken place the equal pressures in the various pores is not (except for spherical
porosity) even closely determined by the generalised Eshelby-type solutions which would make
possible the computations in Section 2.

Fortunately, the moduli G, lIu can be computed in terms of the moduli which prevail after all
internal pressure increments (over the ambient prevailing values) have dissipated by global
diffusion viz. those resulting from solution of eqns (2.2Id), or their general ellipsoidal counter
parts, with G*/G = 0 = K*/K. Thus, whereas intra-site redistribution (such as the "squelching"
mechanism, Fig. 3(a), in tabular inclusions) may produce an effective softening of the K*/K
ratio (such that A is of order unity), the mechanism of global drainage formally reduces it to
absolute zero. We shall compute the resulting "drained" moduli G,II in the next section; this
second use of G is not a notational oversight because, in fact, the shear modulus for
"undrained" deformation (viz. equilibrated potential between sites, but no fluid escape by
global diffusion from a representative continuum element) is easily shown [12] to be the same as
that for "drained" deformation (where all internal fluid pressure increments are allowed to
extinguish). Further, there is a relation between "u and 11, namely [12]

[311 +B(I- 2,,)(1- K/K~)]
"u = [3 - B(1- 211)(1- K/K~)] ,

_ [IlK - I/K~]

B = [VolKf + 11K -lIK~- Vo/K~' (3.4)

In eqns (3.4), Kf is the actual bulk modulus of the fluid (which is K* only until the pore is
allowed to lose fluid), Vo is the "porosity" or volume concentration of pores, K ==
2G(1 +11)/3(1- 2,,) is the "drained" bulk modulus and both K~ and K~ may be approximately
identified with K' == 2G'(1 +11')/3(1- 211'). Clearly, since eqns (2.2Ia, b) tell us that, in general,
both G, ;; will relax appreciably from G, ii to G, 11 and since eqns (3.4) give us an independent
relation for lIu, we conclude that substantial alteration in G, ;; can occur between G, ii and G, lIu•

The amount is to be decided (using eqn 3.4 and Fig. 2, or eqn 3.6 in the next section) for each
particular choice of solid/fluid moduli, porosity structure, etc. but a useful observation is that
·the relaxation is small for spherical porosity and maximum for flat inclusions.

(iii) Global diffusion between adjacent continuum elements (G, "u -+ G, II).
Even after complete internal equilibration within a representative continuum element

(assuming boundaries were sealed off to avoid overlap with the last two regimes), there will still
usually be a difference between the resulting thermophysical potentials of the mobile speciest
in adjacent elements of a body subjected to non-homogeneous stress fields viz. there will be a
global (or macroscopic) gradient in potential. As a result, further diffusion will take place on the
macroscopic interelement scale and this will eventually lead to a field of stress and species
potential which is in equilibrium with the boundary values imposed on these or related variables
(e.g. displacement and flow rate). This regime has had central importance in classical consoli
dation theories of soil and rock mechanics (e.g. [10, 12]) and needs little special consideration
here. The central result needed is that the primary "consolidation" time Till, during which is
removed most of the imbalance in potential of the mobile species resulting from a stress-field
varying with characteristic length I, can be reasonably estimated [12] by

TIll = f/4c, (3.5a)

where K is the macroscopic permeability of the overall porous structure, ,." is fluid viscosity and
Lm is an appropriate modulus of the mixture [12].

For instance, we suppose that stressing is achieved by propagation of a dilational wave
through the medium (since, in the linear quasi-static theory, shear produces no diffusion, a

tWe deliberately avoid the word "fluid" here as other diffusion phenomena (e.g. impurities in crystalline solid) are to be
included where relevant!



Response regimes of f1uid·impregnated solids 813

feature currently providing guidance in our formulation of a dynamic theory): then the
characteristic length I can be chosen as the wavelength Aand the stress gradient is maintained over
this length for a time of order w-I (frequency w). Appreciable diffusion will take place if we meet
the condition

W -I ~ A2/4e, w~ c/14c, A:S 4clcp, cp iE Aw (3.5b)

(3.6)

where Cp is the bulk wave speed and, for present purposes, can be regarded as effectively
determined (to within a time-dependent factor of order 2) for any particular diffuso-viscoelastic
medium. Equation (3.5b) is precisely the condition we can derive for appreciable attenuation in the
classical Diot theory of wave propagation in porous media: such a recognition leads to better
insight on the severe limitations still not being appreciated in physical applications [e.g. 49].t

Some of the difficulty can be seen already by comparing eqns (3.5) and (3.3): if 121e should
happen to be of the same order as a2/U (or D2/U) then 'TIll would be comparable to 'TlJ and,
since the artifact of sealed element boundaries is not available (in a continuous body under
inhomogeneous stress, for instance), the "viscoelastic" relaxation of Section 3(ii) would be
developing simultaneously with the global diffusion of Section 3(iii). This may not cause undue
concemt unless we remember that both mechanisms have the same character, so that
appreciable long-range diffusion may result under global gradients of the polarized site
potentials: to be more precise, which measure of potential can we now employ in a law for
global diffusion if the sites within a single continuum element are in a state which varies
strongly with orientation? The question is considered more carefully in Section 4 but our
purpose here is to assess the comparability of 'TlJ and 'TIll: we assert that these can be of the
same order under many realistic physical conditions and, especially over a geophysical range in
which the classical theory of Diot could be argued to have relevance.

In computing c of eqns (3.3) we use (for R) only the dimensions of the microporosity
connecting the major sites (e.g. fluid globules): if the sites are themselves potential passageways
for the mobile species then the overall permeability K may be substantially larger§ (e.g.
consider the case of a regular array of pores not quite intersecting but with miniature
passageways between them [36]). If as much as a tenfold increase in c (over c) can be achieved
in this fashion (eqn 3.5) then wavelengths an order of magnitude greater than the maximum
pore dimensions will certainly produce 'TIll comparable to 'Tn: although such high-frequency
components (approaching microstructural size) may seem irrelevant (because of diffractive
scattering [e.g. 43]) they are obviously typical of the wavelengths (eqn 3.5b) needed for
appreciable attenuation, by global diffusion, in many representative porous media. However,
another particularly interesting situation is that of contiguous sites, when eqn (3.3c) applies with
strong contributions from (D{h)3 terms: since we can correspond h2 with K, and thus 'TH> is
approximately (D2le)f2(D/h)2, we see that (l/D)2 can be as large as Dlh but 'TIII will still be
comparable to 'Tn. Since D/h can readily be as large as 103 (viz. l/D=30), then wavelengths
allowable in the continuum global diffusion theory do involve a simultaneous local equilibration
between sites and no single potential is apparent for the purpose of writing an inter-element
transport law (like that of D'Arcy or Fick). An excellent example here is the case of
highly-fissured rock strata (e.g. [44]).

As we have already mentioned, the values of G, v are to be computed from GS
, vS by

solving eqns (2.20c) and (2.21b) throughout the variation of effective porosity concentration
from CS to C, with G*IO = 0= K*IK. A reasonable estimate is possible for spherical porosity
(if K = K', i.e. assuming comparable fluid and solid matrix moduli), by noticing that 0 remains
essentially constant at G= G, namely

K

4G f dKIK(K+4G)=(C-C')=ln[(4G+K)KIK(4G+K)].
K

tFor instance, suppose we choose a typical intact geophysical structure Cp '" 4x I~ em/sec and C s 1ij2 cmz/sec; then we
need awavelength less than 10-3 em for appreciable diffusive attenuation! This will typically be much less than arepresentative
microstructura1 size for the medium under consideration. Indeed, if the medium is higbly fissured, we may well achieve
cp .. 4x lit em/sec, C" lit cm2/sec, i.e. As 1.0 em but this will, again, be less than microstructural scales.

*For example, it may appear that the complication is accounted for by viscoelastic moduli in Biot's equations, ignoring the
question of a well-defined potential; that fix-up may sometimes be adequate.

§The reader is referred to analogous (somewhat unrealistic) computations of thermal conductivity in a composite (2).
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The exponential decay in eqn (2.20b), for k::: 00 and v constant, gives a rough idea of the
behavior but a better impression is gained from (3.6). However, the actual amount of transition
from K to K is best obtained by first finding K/Ks (for given kS::: KS/K" liS, g::: 00) and then
K/KS (for liS, k ::: 00, g ::: 00) from the appropriate curves for spherical porosity in Fig. 2.

Likewise, for flat porosity, the values of K, 0 are first extracted from Fig. 2 (using,. "" 0 and
appropriate values of liS, A-probably 00 for the latter unless the fluid can redistribute and
thereby effectively soften); then K,O are obtained (again for II",. "" 0, A "" 0). Unlike the
spherical pore case (where K:I- K = K:I- K" 0 "" 0:1- G:I- OS), we will in general find
O:l-O:l-G""Os and K:l-K""K=Ks; by use of eqns (3.4) we then find K:l-Ku UK either,
except for spherical porosity). Thus, there is substantial shear relaxation from Gto 0, further
softening from K to Ku (and 0 to 0) when pores are non-equiaxed and then a final bulk
alteration from K. to K as global diffusion is allowed. For the illustrative isotropic model
studied, this completes the description of limiting moduli and characteristic times associated
with each of the three dominant regimes of time-dependent response.

4. COUPLED CHARACTER OF LOCAL AND GLOBAL DIFFUSION

The foregoing discussion (Sections 2, 3) confirms that there are many circumstances in
which local equilibration of fluid potential does not have time to develop fully before
appreciable inter-element transfer of fluid (viz. global diffusion) can take place. It is not obvious
that any particular tensor-valued potential(s) can then be employed to describe the driving-force
for global diffusion; any theory (e.g. [14,17]) which starts out from that assumption must be
applied with great care to the physical situation. Our intention in this section is merely to
outline the general character of the local diffusive equilibration process and to suggest some
avenues of pursuit toward a tractable theory for dynamic response viz. the extraction of some
adequate measure(s) describing the potential in any representative element during the local
equilibration process (a topic initiated in Chap. 2 of [13]).

For descriptive convenience we shall limit the discussion to the models (Section 2a) of
ellipsoidal fluid inclusions, with appropriate statistical distributions of orientation (e.g. defined
by normal n to spheroidal inclusions). Suppose the (essentially viscoelastic) short-term shear
relaxation (Section 3i) has already taken place and there remains the pressure distributions p(n),
as determined by eqns (2.2) or their anisotropic analogues (e.g. [21]) with 0* "" O. We first ask if
p(n) has any simple tensor character: toward an answer, we note that the special isotropic eqns
·(2.2) et seq. imply the following form of pressure, before any local flow is allowed

(4.1)

where m and t are the principal directions (of the ellipsoid) orthogonal to n, so that a(m)::: a(t)

for the simplest spheroidal case. For any specified component of applied stress O'ff, the induced
pressure thus corresponds to the same component (in the same coordinate system) of the tensor
quantity a (n)nn + a(m)mm + a(t)tt. Likewise, the pressure in the anisotropic case would be just
the appropriate tensor component of a somewhat more extended quantity [21]. We wish to explore
the value of this pressure characterization, toward an estimate of the coefficients describing fluid
exchange between elements at different levels of applied stress O'ff.

An appealing induction from eqn (4.1) is that the fluid pressure among the spheroidal pores
(a(m) ::: a(t» has a general time-dependent behavior of the following kind:

t

p(n, t)::: f{Sff(t')[aAninj + aB(mimj + titj)] + ae&k1(t') + ana-(t')} dt', (4.2a)
o

where the evolution scalars aA, aB, ac, aD may be functions of the time elapse variable t - t',
Sij ... O'ij - 8iplcJc13 are the deviatoric stress components (in a chosen Cartesian coordinate
system), and 0' is any other relevant scalar, as yet undetermined. Our separation of the stress
into hydrostatic and shear contributions is motivated by the obvious feature that the pore-fluid
pressures resulting from O'kJe may be already at local equilibrium (i.e. a c is independent of
t - t'), whereas those caused by Sij must certainly equilibrate by inter-site matter transfer.
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However, the individual site-pressures p(n, t) must also depend on how the exchange of fluid
with adjacent continuum elements (or atmosphere) is controlled: the simplest possible account
of this influence is through a single quantity m expressing the fluid mass content per unit
volume. If we continue to limit ourselves to a linear theory for the medium, then we have
essentially made the following identifications:

a A,B,C,D = a A.B,C,D(t - t'), u=m. (4.2b)

Having chosen only a single fluid-mass variable to account for fluid exchange between
adjacent representative samples of pore microstructure, there now arises only a single flow
vector quantity (components qj), describing that overall fluid transfer but not its composition
from discrete inter-site fluxes. The next question concerns the potential which drives the fluid
exchange rate qj; since the pore pressures are considered to be responsible for whatever fluxes
occur then some measure of p(n, t) must be chosen. Inspection of eqn (4.2a) and lack of bias in
the discrete transmissivity between sites would quite obviously imply that only the non
polarized components contribute non-cancelling fluxes; a simplistic postulate might then take the
form

p ==f[aeO"kk +avril] dt' .
o

(4.2c)

Closure of the theory is now provided by the fluid mass-conservation identity,

t

a~j (K :~J == aa~ = aD-I(O) {:t <P - adO)ukk) - I[aeO"kk +avril] dt'J. (4.2d)
o

The problem is now reduced to reasonably tractable diffusoviscoelastic response (e.g. [15]);
the internal equilibration process is essentially uncoupled from the global diffusion. The
stress-strain relations which appear are not difficult to rationalize, when we consider the
uniform nature of the pore pressure decay in eqn (4.2a), and we write them as follows:

2GEij = Uij - 1~ v U~ij - I [S~(PAaA +PaaB) +8jj (PcaeO"kk +Pvavril)] dt' . (4.3a)
o

The constants PA, PB, Pc, PD can be determined quite readily (in accordance with the compu
tations of Section 2) by considering the response immediately after application of a stress
increment at t = 0; this permits the identification

(4.3b)

We are still left with two unknown P's: for those we need to make the reasonable argument that
aA(t)/aB(t) and adt)/aD(t) are constant, so that PB =PA and PD =Pc without loss of general
ity. Since aA(O)::= a(n) and aB(O)::= arm) can readily be determined from the computations
performed in Section 2, while adO) and aD(O) are adequately rationalized elsewhere [12], there
remains only the problem of establishing the normalized character of the a(t - t ') functions,
especially aA.B (since aC.D will be reasonably constant). Our discussion of this latter question
should help to emphasize how special the assumptions are which led to eqn (4.2).

Let us temporarily restrict our attention to local diffusion; we can regard the variously
oriented sites as a bank of interconnected reservoirs, exchanging fluid in accordance with some
transmissivity function k(n', 0) which defines the rate at which fluid mass flows from sites with
orientation 0 ' to those with normal n under a unit difference of pressure between the sites. As a
result, any particular site (n), receiving fluid from all the others (denoted generically by n'),
changes its mass fluid content: if the fluid has bulk modulus Kj and the modulus controlling
matrix deformation (under increments of internal pressure) is E-, then a formal statement of the
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fluid exchange conditions is, with reference fluid density Po

M(n~p(n) = f k(n', D)[p(n') - p(n)] dS(D'), M == Po V (:. - ~J (4.4)

where the integral is taken over all possible values of n' (viz. the surface of a unit sphere), and
the ellipticity ratio e is needed to define the amount by which the effective site volume V(D)
changes under increments of internal pressure (thus e =1.0 for spherical sites, e =ada3 for flat
crack-like inclusions). For the present phenomenological discussion, we neglect the :act that E"
will be somewhat time-dependent.

We attempt a solution of the following form, with amplitudes qj>
00

p(D, t) = Po +2: qjpj(n) exp{-wjt}
j=1

(4.5)

as motivated by the analogy with interconnected reservoirs (or electrical circuits of capacitors
and resistances). This will solve eqn (4.4) if the "modes" Pk and associated decay times wk l

satisfy the integral equation

(K(D) - WjM(D»Pj(D) = f k(n', n)pj(n') dS(n') (4.6)

where K(D) is the normalized integral of k(D', D) over all possible orientations n'. The eigenvalue
problem (e.g. [45]) implicit in eqn (4.6), is substantially more intelligible as the equivalent matrix
problem, in which a finite proportion of the site volume is assigned to each of a finite group of
orientations. The latter view converts eqn (4.6) to an N x N-matrix equation on the N distinct
values of any pressure mode {p}, namely

[(K - wM(n;»c5;j - k(Dj, nj)]{p} = {OJ, i, j = I, ... N. (4.7)

An example is k(n;, nj) =KIN and constant M; then the non-trivial eigenvalues of eqn (4.7) are
degenerate, Wk = KIM (analogous to our estimates in Section 3), and it is obviously possible to
satisfy initial conditions (eqn 4.1) since a restriction on shapes of {P} arises only in the respect
of zero average, if we employ (4.5). An important consequence of eqns (4.6) and (4.7) is that
there will actually be (an infinity of) values of Wk substantially lower than KIM in the usual
physical circumstances where k(D', n) is not a constant; these imply longer relaxation times and
cannot be ignored because a single mode cannot be expected to satisfy initial conditions of the
kind in eqn (4.1). Thus, our estimates for TIl in Section 3 are the lowest possible because they
assume that all sites exchange fluid as if they were adjacent, whereas the permeability k
between site n' and site n must actually be computed as the inverse of resistances summed over
the multiple-spacing distances that must (by simple probability considerations) separate the two
sites; sites of all orientations cannot be packed together with only a single representative
spacing separating any two of them.

A number of suggestions may now be made about valid measures of potential for global
diffusion. In particular, eqns (4.1) and (4.2) may motivate the extraction of an orientation
average; our results for uniform k(n', n) support this idea because they imply that Po in eqn (4.5)
is indeed precisely that average so that it certainly becomes the fluid potential after sufficient
time has elapsed. However, we must in general expect that the fluid pressure average will not
be constant in the local equilibration regime (even if ac, aD are constant in eqn 4.2d). Indeed,
the presence of an average like Po (constant during the local equilibration process) does strongly
appeal for its use to govern inter-element fluid motion and suitable behavior of k(D;, nj) may
permit the initial conditions (eqn 4.1) to be satisfied by a modal response which allows such a
suitable potential Po: however, most physical circumstances will not be amenable to such a
simple treatment and much better understanding of representative microstructures is being
pursued (as motivated by efforts in [36] and internal variable concepts in [13]).

5. IMPLICATIONS FOR DYNAMIC INELASTIC BEHAVIOR AND CONCLUSION

In all that preceded we have assumed that the initial geometry of the microstructure is
preserved: thus, it is feasible for inclusions (especially pores) to revert back to their original
shapes when the stress increment, causing deformation and fluid flow, is removed. This
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elasticity may be provided by the coherence of the surrounding matrix and the assumption that
inclusion material (e.g. fluid) stays in contact with the interface which it forms with the matrix
material (hence our choice of the word "saturated" (e.g. [12]). However, the stress may indeed
be sufficient to cause either irrecoverable deformation in the solid matrix or actual micro
structural alteration (such as growth of crack-like porosity or grain-boundary sliding). The
former may be simply (for instance) just crystalline dislocation motion, dictated by the local
(micro) resolved shear stress on available slip planes but an important example of the latter is
brittle growth of crack-like porosity. We wish to make a few brief observations on the
relevance of our preceding discussions of inclusion fluid pressure and locally non-equilibrated
potentials in deciding on inelastic constitutive formulations for materials incorporating these
sources of "plasticity".

In the first place, it is fairly obvious that the presence of an equilibrated fluid pressure (p) in
inclusions, along with an equal (i.e. negative compressive) exterior hydrostatic stress u~=-p8jj

gives rise to a micro-stress distribution which is essentially uniform and non-deviatoric (except
in the presence of any active micro-heterogeneities which have not been treatable as controll
able inclusions sites viz. have been lumped into the region called solid matrix). Thus, it is only
the other part of the exterior stress, defined by u~+ PUjjo which is dominantly operative in
producing the micro-stresses needed for inelastic deformation: this is just another
way of arriving at an approximate vindication (e.g. Chap 2 of [13]) of the classical
"effective stress" law of soil mechanics (e.g. [20]). It becomes somewhat exact when
the irreversibility is due to propagation of pores (or inclusions) which are sufficiently flat that
there is a severe stress concentration on their perimeter whenever interior stress is not equal to
the exterior applied stress on the (perhaps composite) element containing this crack-like
porosity. It seems, then, that one should just test the inelastic behavior of the material, allowing
ample time for fluid pressure dissipation through the walls to the surrounding atmosphere: if
!(Uij) describes some inelastic characteristic of the material (e.g. a "yield" function) in these
tests, then !(Uij +p8jj) should be the appropriate function when p is determined by separate
means in solution of a field problem with non-homogeneous stress conditions.

Since an effective stress law of this kind (even with extensions like u~ + ~p8ij, 0 < ~ s 1.0,
e.g. in attempting to account for non-acute asperity contact situations) has played such a central
role in quasi-static analyses of soil and rock mechanics (e.g. [46,47]), it is now opportune to ask
how well it can be extended (as often assumed) to the dynamic context. The first complication
arises in defining p for stressing times shorter than 'Til (Section 3): again, the orientation average
may be proposed (as we rationalized somewhat, for the potential governing global diffusion, in
Section 4). Indeed, experiments may be conducted in which induced pore-pressure is measured
by piezometer for a dynamically stressed element: we see that such a measurement is
ambiguous for flat pores and use of it or extension of quasi-static criteria to dynamic
formulations warrants great care. The question then remains as to whether the relation between
inelastic behavior and apparent fluid pressure, observed in these experiments, has any deter
minable connection to the actual mehanisms causing failure or can even be linked to cor
responding observations under sufficiently slow stressing conditions.

That the actual local pressures in fluid inclusions can be more important (than any average
measure of fluid stress) for the actual mechanisms causing failure is seen quite readily by
example. If a flat inclusion can extend its surface area whenever stresses on the perimeter
exceed some toleration criterion (e.g. like energy release rate for crack-like propagation), then
such propagation depends mainly on the difference between pressure in the inclusion and the
normal component (of the exterior stress field) on the surface. This particular inclusion could
thus extend irreversibly (even to the extent of linking up with other pores and causing a
macroscopic fracture), even while the overall average of fluid pressure (e.g. zero for external
shear stress) might suggest that the effective stress combination is not adequate for inelastic
deformation. Likewise, the micro-stress field in the matrix around such an inclusion depends
predominantly on a combination of the applied exterior stress and the individUal fluid pressure
(or even shear-stress, for t < 'Tt) in that site: occurrence of matrix inelasticity (like plastic slip)
will, thus, not be determined by any single average of the "pore-pressures" but rather by
extremes and details of the inclusion-pressure distribution. Averages will be helpful only
insofar as they allow monitoring of such extremes: thus an effective stress law (based on
u~+gp8jj) can be considered relevant to rapid stressing regimes only insofar as g (for instance)
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can be chosen to represent the most critical individual inclusion pressure, as related to the
average "pore-pressure" p.

In conclusion, then, we may identify the problems which will merit attention in subsequent
papers: (1) classical and mixture theories, even for low-amplitude wave propagation in porous
media, must be confined to the limited realm of their physical applicability (e.g. as dictated by
criteria like eqns 3.5); an improved formulation must be found, based on the physical
considerations in this paper, to isolate the viscoelastic (e.g. [19,48]) from the diffusive
modifications of stress waves, especially in light of continuing inability to experimentally
identify twin wave-types predicted by the theory employed (e.g. [49]). As well (2) it will be
essential to provide more realistic descriptions of response to shock waves in many practical
endeavors (e.g. blasting); the micro-structure pertaining in the vicinity of a narrow shock front is
undoubtedly more complicated than the common hydrodynamic assumptions (e.g. [17]) and the
non-equilibration of fluid state to a single pore-pressure, as described here, merits primary
attention. Lastly, we might mention the value of (3) further computations for the limiting elastic
responses in the case of overall anisotropic behavior of the porous composite (viz. extensions
of Section 2); some of these have been attempted (e.g. see review in [21]), and indeed the
isotropic distribution of non-equiaxed sites presents the most extreme example of polarised
pore-fluid potential, but a complete set of physically consistent results (analogous to Fig. 2)
would certainly be worth having for practically important assumptions like transverse isotropy.
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